作者
冯承天,曾在高校从事“理论物理”、“群论及其应用”、“微分几何及其应用”等学科的教学和研究工作,著有《物理学中的几何方法》《从代数基本定理到超数:一段经典数学的奇幻之旅》《从求解多项式方程到阿贝尔不可能性定理:细说五次方程无求根公式》《从一元一次方程到伽罗瓦理论》等;近期参与翻译或译校的作品有:《对称》、《计数之乐》、《数学的世界VI》、《他们曾嘲笑伽利略——伟大的发明家如何证明批评者错了》《恋爱中的爱因斯坦:科学罗曼史》《怎样解题:数学思维的新方法》《分形、取子游戏及彭罗斯铺陈》《天地有大美:现代科学之伟大方程》《寻觅基元:探索物质的终结构》等。

内容
《从一元一次方程到伽罗瓦理论》是讲解解多项式方程及数域上的伽罗瓦理论的一本入门读物。本书分为八个部分,共计二十八章,尽可能用通俗易懂的方式介绍伽罗瓦理论。

《从一元一次方程到伽罗瓦理论》在阐述整个伽罗瓦理论来龙去脉的基础上,试图引导读者自己去探究、解决一系列重大的古典数学难题,如“尺规作图”、“三次实系数不可约方程的‘不可简化情况’”“伽罗瓦的根式可解之判别定理”等,旨在引导读者掌握多项式理论、域论、尺规作图理论,以及用分析法和反证法去解决数学问题的一些常用方法,从而体会数学之美。

《从一元一次方程到伽罗瓦理论》从“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的“不可简化情况”,以及伽罗瓦的根式可解判别定理等。

《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学的读者,在学习解多项式方程、伽罗瓦理论初步,以及近世代数基础时阅读参考。

I 作者相关

发表评论